
Modern CNNs
• Fixed, small kernels
• Pooling to process large images
• Adapted to specific image size

Problems
• Each dataset needs custom architecture
• Cannot adapt to new scales
• Not clear if small kernels are ideal
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Experiments
• 2D: competitive with ResNet, 
  outperforms filter bases works (Fig. 4)

• 1D: MAGNet is state-of-the-art (Fig. 5)
• Minimal precision loss with aliasing 
  regularization
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Conclusions
• FlexConv has unrestricted freq. band, 
  where other works have limited bands, 
  tied to kernel size

• FlexNets can be used on any dataset, 
  without tuning kernel size or pooling

• FlexNets beat SOTA 1D datasets, 
  and beat filter bases works on 2D

• Shallow nets with global kernel size can 
  be competitive with deep, local kernels

Limitations
• More parameters for small kernels than 
  conventional convolutions

• FlexConv is too expensive to run in 
  deep modern architectures

• Large conv kernel are still expensive 
  to run, if FlexNet learns them
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FlexConv
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FlexConv
Free-form kernel

• Extension of CKConv [3] to 2D: 
  MLP takes pixels and predicts kernel

• Constant parameters for any kernel size
• New MLP: “MAGNet”

Learnable kernel size 
• Added learnable Gaussian mask
• Crop where zero (2 stddevs) 
  for faster convolution

Works at any resolution
• MAGNet allows for frequency analysis
• We regularize highest frequency 
  to prevent aliasing when upscaling
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Related Works
1. Dilation of normal kernels [5] 
  or filter bases [2, 4, 6] (Fig. 3a)

2. Deformable kernels [1] (Fig. 3b)

Limited frequency response, 
unlike FlexConv (Fig. 3c)
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FlexNet
• Residual FlexConv blocks
• No pooling layers
• Adapts to image size
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FlexNet
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Kernels learned on CIFAR-10 (left to right, shallow to deep)
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Learned networks
• CIFAR-10: small kernels in early layers, 
  large kernels in later layers
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Exp: CIFAR-10, acc. at new resolution
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Exp: 1D datasets
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