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This lecture

» Recap of self-attention/Transformers from DL course
e Problems and solutions in applying Transformers in vision
o Application: object detection




Recap: Concepts

Qutput
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Self-attention Transformer

e Operation to use in a Deep Net

o Compare to: convolution, feed forward

o Architecture

Sequence-to-sequence tasks
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Figure 1: The Transformer - model architecture.

Fi(f]ures from Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. Advances in Neural
Information Processing Systems, 30. https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053clc4a845aa-Abstract.html
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Self-attention

From Deep Learning course
Example self-attention powered architecture

o Data: a sentence = sequence of words
e Task: predict next token = next word
« Representation: token is a R¢ vector

How to predict next word

o Self-attention layer: some weighted
combination of all tokens
e MLP: just on the single token

Figure from Lecture 7 of CS4240 Deep Learning, by Jan van Gemert.
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Query - Key - Value

Movie database retrieval

* Query: I'm looking for an action movie from 2008
e Database
o Value: Interstellar; Key: action movie, 2014
o Value: Shrek; Key: comedy, 2001
o Value: The Dark Knight; Key: action movie, 2008
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Query - Key - Value

Movie database retrieval

* Query: I'm looking for an action movie from 2008
e Database

o Value: Interstellar; Key: action movie, 2014

o Value: Shrek; Key: comedy, 2001

o Value: The Dark Knight; Key: action movie, 2008
e Query matches key, retrieves value: "The Dark Knight"

- Self-attention = "soft, weighted retrieval"
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o Some d-dimensional feature
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« We have a "query" token q €ERY
o "What are we looking for?"
o Some d-dimensional feature

e For the database of size N we have key tokens and value tokens ki,v; j €[0,N]
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"Soft, weighted retrieval”

« We have a "query" token q €ERY
o "What are we looking for?"
o Some d-dimensional feature

» For the database of size N we have key tokens and value tokens ki,v; ] €[0,N]
» Compare the query q against "key" tokens k.
o We use softmax similarity: ' ) = T,y = _xpa’kj)
y sim(q, k;) = softmax(q "k;) > exp(@Tk))

o Each similarity represents
how much the query matches the key
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"Soft, weighted retrieval”

We have a "query" token q €ERY
o "What are we looking for?"
o Some d-dimensional feature

» For the database of size N we have key tokens and value tokens ki,v; ] €[0,N]
» Compare the query q against "key" tokens k.
o We use softmax similarity: ' ) = T,y = _xpa’kj)
y sim(q, k;) = softmax(q "k;) > exp(@Tk))

o Each similarity represents
how much the query matches the key
Output is a sum over values weighted by similarity with key: y = > i (sim(q, k;j) - v;)
o = a "soft" database retrieval
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Self-attention

Use linear projection to create vovl;:g:t student was

queries, keys and values:
Output

qi = W gxi+ by layer

ki= Wx;+ by / D

vi= W x;+ bV \/o \ \/S

yi= 2 ;sim(q;, kj) "V Self-attention
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Self-attention
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Self-attention

Use linear projection to create vovl;:gzt student was
queries, keys and values: T\A/"

Output 1
qi = Wgxi+ by layer [)’j
vi=W,x;+ b, \U, \ é?—- \ ﬁ?—~\4
yi= X ;sim(qi, kj) - v; Self-attention . ‘

i j i K j ayer gﬁ(—,{\c()) sl 2) §/,In (ng)
Ko qt’ (KZ K3

(Note: i is included in j, but not shown) Input ﬁ ? A f

| X, .
Q: Complexity? ayer X X X
A: O(N 2d)’ because of Sim(qia kJ) :I:I](F))IEJ(:}:S the student book
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Qutput
Probabilities

Transformers

( (Rodz Nom )
; — Feed
Transformer Vaswani et al. 2017 = creed
" " Add & N
e "Transformer layer () ( & Norm ~
. l_,_] Multi-Head
o Self-attention Feed Attention
Forward T 7 Nx
o Feed Forward (AkA MLP) — 1
. . . . Nx Add & Norm
o Skip-connections & normalization ) Masked
.. . Multi-Head Multi-Head
e Positional encodings Attention Attention
: . . S ) X )
e Used in architecture with encoder & decoder M ) U ——
Positional D @ Pasitional
These components are used interchangeably and Encoding Encoding
Input Output
selectively! Embedding Embedding
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(shifted right)

Figure from Vaswani, A, Shazeer, N, Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, Kaiser, L., & Polosukhin, I.
(2017). Attention is All you Need. Advances in Neural Information Processing Systems, 30.
https:/papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053clc4a845aa-Abstract. html

Figure 1: The Transformer - model architecture.
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Tasks to use a Transformer with

In Natural Language Processing (NLP): sentences = sequences of words

o Words are discrete, semantic things
e Words can be represented with a vector embedding x ERY, e.g. Word2Vec




Tasks to use a Transformer with

In Natural Language Processing (NLP): sentences = sequences of words

o Words are discrete, semantic things
e Words can be represented with a vector embedding x ERY, e.g. Word2Vec

In Computer Vision: data is images: collection of pixels

Q: How could we use a Transformer for images?
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Tasks to use a Transformer with

In Natural Language Processing (NLP): sentences = sequences of words

o Words are discrete, semantic things
e Words can be represented with a vector embedding x ERY, e.g. Word2Vec

In Computer Vision: data is images: collection of pixels
Q: How could we use a Transformer for images?

A: Treat image as a (2D) sequence!
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Transformers for Vision

Q: Can anyone see a
problem with using self-
attention for pixels?




Transformers for Vision

Q: Can anyone see a
problem with using self-
attention for pixels?

A: Complexity O(N 2d), but
with N = amount of pixels!

E.g. ImageNet resolution,
224 x 224 = 50176 pixels
> 50176% = 2.5 x 10°
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Q: How do we solve this?
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Q: How do we solve this?

o ViT
e SASA




Transformers for Vision

Q: How do we solve this?

o ViT
e SASA

Let's go ahead
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Solution 1: compress pixels

Vision Transformer (ViT) 1 Transformer Encoder
Vision Transformer (ViT) E
Dosovitskiy et al. (2020) :
Transformer Encoder !
e Use a convolution to compress patches to :
tokens Pmbeaamg > O ‘ ‘ @fl @ﬁ :
o 16 x 16 convolution with stride 16. .bi 1 L’"ea”r"’“f"“ffFlTe“e‘]PmhSl E
« Then use regular Transformer encoder %E;—’. mEEE —F—
e (-) Needs pre-training on JFT (303M ' ' -Pa“"“
imag eS) Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,

add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

[Vaswani et al.| (2017).

Dosovitskiy, A., Beyer, L., Kolesnikov, A.,, Weissenborn, D,, Zhai, X,, Unterthiner, T, ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for Tak e me b aCk
image recognition at scale. arXiv preprint arXiv:2010.11929.




Solution 2: don't use all pixels

Stand-Alone Self-Attention (SASA) o softmax

Ramachandran et al. (2019) :

output

—

Query = center pixel

e Keys & values = local window around query 5 keys valuas
e Local operator, much like convolution! e
_ k . matrix multiplication
°©Yi~— Z j=—k Slm(Qi,ki+j) " Vit ( ----- learned transform 1
e _..but still needs downsampling in architecture. Figure 3: An example of a local attention layer over spatial
extent of £ = 3.
Ramachandran, P, Parmar, N., Vaswani, A., Bello, L, Levskaya, A., & Shlens, J. (2019). Stand-Alone Self-Attention in Vision Models. Neural Information Tak e me b aCk

Processing Systems.
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Solution 3: approximate softmax
attention

_______________________________________________________

Performers  Choromanski et al. (2020) e o(L*d)___ ™ O(Lrd) Lra) 3y
Eo’?é‘/' ! / E L :’ /i
o Softmax is a kernel between q and k oL o FH :Ei = u
: . : - o li==11': | rxI
e Use a sort of "inverse kernel trick": | Lx Lo Loxdjf [~ = é:3: rx LSS L < d
o Map k to random features, tomatch | | |/ Ben A - (K)HT

H I\ : :\ / I‘\ K

kernel fO rm u Iatlon \\ _____ é‘_ _aztin:ifn_m_ec_ha_nj_.sz _Y . ’/, \\ ‘9 ______ \_\ ___________________________________ ¥ __-’/ll

o Do k X v before -+ X q Figure 1: Approximation of the regular attention mechanism AV (before D~ '-renormalization) via (random)

feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

o Great paper, but too difficult for mainstream
apparently.

Choromanski, K., Likhosherstov, V., Dohan, D,, Song, X., Gane, A, Sarlos, T, Hawkins, P, Davis, J., Mohiuddin, A., Kaiser, L., Belanger, D,, Colwell, L., & Weller, A. Tak e me b aCk
(2020). Rethinking Attention with Performers. ArXiv:2009.14794 [Cs, Stat]. http:/arxiv.org/abs/2009.14794
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State of the field

o VIT: fall 2020
* Now: one or two waves of research on top
e Needs time to settle




State of the field

o VIT: fall 2020
* Now: one or two waves of research on top
e Needs time to settle

Open questions

e Can we train without extra "tricks"?

o Benefits of ConvNet-like architectures?

e Do we even need self-attention?
o Fourier transform Lee-Thorp et al. (2021)
0 Only MLPs Tolstikhin et al. (2021)

Lee-Thorp, J., Ainslie, J., Eckstein, I,, & Ontanon, S. (20212. FNet: Mixing Tokens with Fourier Transforms. arXiv preprint arXiv:2105.03824. Tolstikhin, I, Houlsby, N., Kolesnikov,
A., Beyer, L., Zhai, X., Unterthiner, T, ... & Dosovitskiy, A. (2021). MLP-Mixer: An all-MLP architecture for vision. arXiv preprint arXiv:2105.01601.




Application: object detection

DEtection TRansformer (DETR) | backbone 1 encoder

1
set of image features::

Carion et al. (2020) | ]
i ____________ : transformer : : transformer

________________

class,
box

no
object

class,
box

e Vanilla Transformer architecture snooder decoder
T

« CNN preprocessing ooo ‘objeétqﬁnesﬁ

e Transformer encoding (on CNN feature

CH+|
CH+|
.D-—b
o

____________________________________________________________________

Fig.2: DETR uses a conventional CNN backbone to learn a 2D representation of an
map) input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a

o Transformer decoder + small MLP over small fixed number of learned positional embeddings, which we call object queries, and
. . additionally attends to the encoder output. We pass each output embedding of the

(Iearned) Obj ect queries decoder to a shared feed forward network (FFN) that predicts either a detection (class

e Use Hunganan algonthm to match and bounding box) or a “no object” class.
proposals to groundtruths

Carion, N, Massa, F,, Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. ArXiv:2005.12872 [Cs].
http:/arxiv.org/abs/2005.12872
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Application: object dete

DEtection TRansformer (DETR)
Carion et al. (2020)

e Vanilla Transformer architecture

e CNN preprocessing

e Transformer encoding (on CNN feature
map)

e Transformer decoder + small MLP over
(learned) object queries

e Use Hungarian algorithm to match
proposals to groundtruths

Carion, N., Massa, F, Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection
with Transformers. ArXiv:2005.12872 [Cs]. http:/arxiv.org/abs/2005.12872
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Figure 1: The Transformer - model architecture.
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Application: object detection

_____________________________________________________________________

backbone :: encoder decoder " prediction heads.

Pros & cons
set of image featureS|:

i ! i; T/\Wl\‘lFFNF’
e (+) Straightforward architecture | T I

e (+) No need for NMS, negative encoder oo
sampling, etc. Gelelelele ) ‘obe'&muﬁ.esﬁ
e (-) Not yet tuned as well as state-

____________________________________________________

Fig.2: DETR uses a conventional CNN backbone to learn a 2D representation of an
Of—th e-art input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.

Carion, N, Massa, F,, Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. ArXiv:2005.12872 [Cs].
http:/arxiv.org/abs/2005.12872
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Conclusion

Recap

Local Relation

Networks

T Stand-Alone

Attention
Ramachandran et al. 2019

Transformer

o Self-attention: global operation for sequences
» Transformer: encoder-decoder architecture
e Transformers for Vision

o We need to deal with O(N 2d)

o VIiT. compress using pre-processing

o DETR: object detection with Transformers
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Global
\ Attenion

Vectorized
Attention

Figure from Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F.
S., & Shah, M. (2021). Transformers in Vision: A Survey. arXiv
preprint arXiv:2101.01169.




Conclusion

Final remarks

e There is a lot of "low-hanging fruit"
e Novel # better
e Lots to figure out still!

Figure from Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F.
S., & Shah, M. (2021). Transformers in Vision: A Survey. arXiv
preprint arXiv:2101.01169.
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Conclusion

Final remarks

e There is a lot of "low-hanging fruit"
e Novel # better
e Lots to figure out still!

Let's work on it!

https://projectforum.tudelft.nl/course_editions/13/thesis_projects/136

r.bruinties@tudelft.nl

Figure from Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F.
S., & Shah, M. (2021). Transformers in Vision: A Survey. arXiv
preprint arXiv:2101.01169.
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